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Abstract. A predictive control based approach is proposed to deal with a Wiener type
system which is closed through a network. In this approach, an output feedback predictive
controller is designed using delayed sensing data with a specially designed state observer.
The network constraints, i.e., the network-induced delay and data packet dropout, are
compensated in both the forward and backward channels by taking advantage of the char-
acteristics of both the predictive controller and the network transmission. Stability of
the closed-loop system is derived by using the separation principle and switched system
theory. Simulations illustrate the validity of the proposed approach.
Keywords: Networked control systems, Predictive control, Wiener system, Network
constraints

1. Introduction. Networked Control Systems (NCSs) is an emerging research area in
recent years. Distinct from conventional control systems, where the links from sensor to
controller (“backward channel”) and from controller to actuator (“forward channel”) are
assumed to be connected directly with no data loss or delay through the links, in NCSs,
instantaneous and perfect signals between these components are not achievable due to
the inserted network [12, 14]. Despite the ability of remote and distribute control that
such a configuration brings, the network constraints, i.e., the network-induced delays,
data packet dropout, communication bandwidth limitation, data rate constraints, etc. in
NCSs present a new challenge to conventional control theory [5, 2, 10, 6, 13].
A challenging aspect of the networked configuration is that we need to compensate for

the negative effects of the network constraints to retain stability and performance of the
system. For this purpose, a natural and necessary approach is to take advantage of all
the information available on the network to design the controller rather than separate the
design of the controller and network protocols. Preliminary work on this can be found in
a number of publications under the name of “co-design” [3, 15, 16]. Following this idea,
a model based control architecture was proposed in [9], where the knowledge of the plant
dynamics was used to reduce the usage of the network. Furthermore, a predictive control
based control architecture was also reported recently in [4, 8, 16]. In [8], knowledge of the
plant dynamics was used to produce future control signals to actively compensate for the
random network-induced delay in the forward channel with the use of a corresponding
time delay compensator at the actuator side. A better performance can be expected since
the predictive control based approach takes greater advantage of the knowledge available.
However, only few results on nonlinear NCSs have been reported to date under such a
predictive control based framework [11].
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In this paper, a modified predictive control based approach is applied to a Wiener type
system with network constraints [1, 7]. For the output nonlinearity in the Wiener type
system, an output feedback predictive controller is obtained using delayed sensing data
with the help of a specially designed state observer. Unlike normal predictive control
applications, where only the first predictive input of the predictive control sequence is
applied to the plant, in this paper, the whole predictive control sequence is packed and
sent to the actuator through the network and the appropriate predictive input is chosen
by the actuator by a certain rule. With this modification, the conventional predictive
control method can readily extend its application to the networked control environment,
where the network-induced delay and data packet dropout are exactly compensated for.
The stability of the closed-loop system is obtained by proving the stability of the proposed
state observer under certain conditions and modeling the closed-loop system as a switched
system.
The remainder of the paper is organized as follows. Section 2 presents the design details

of the proposed predictive based approach to Wiener systems with network constraints;
Section 3 analyzes the stability of the closed-loop system; Section 4 gives a simple example
to illustrate the validity of the proposed approach and Section 5 concludes the paper.

Figure 1. Wiener systems closed through networks

2. Design of the Predictive Control Based Approach to Wiener Systems with
network constraints. We consider the following Single-Input-Single-Output (SISO)
Wiener type system which is closed through some form of network (Figure 1) in this
paper,

x(k + 1) = Ax(k) + bu(k) (1)

y(k) = cx(k) (2)

z(k) = f(y(k)) (3)

where x ∈ Rn, u, y, z ∈ R, A ∈ Rn×n, b ∈ Rn×1, c ∈ R1×n. The memoryless static nonlin-
ear function f(·) is assumed to be invertible with its inverse denoted by f̂−1(·). Notice that
f̂−1(·) can not be obtained accurately in practice which means ϕ(·) = f̂−1(f(·)) 6≡ 1(·).
The approximate intermediate output ỹ(k) (Figure 2) can thus be obtained as follows,

ỹ(k) = f̂−1(z(k)) = ϕ(y(k)) (4)
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With this inverse process, the predictive controller for the system in (1)—(3) in a net-
worked environment can then be obtained using a Linear Generalized Predictive Control
(LGPC) method and a state observer as follows.

2.1. Design of the predictive controller using delayed data. Let the cost function
be defined by

J(N1, N2, Nu) =

N2X

j=N1

qj(ŷ(k + j|k − τsc,k)− ω(y; k + j))2 +

NuX

j=1

rj∆u
2(k + j − 1) (5)

where N1 and N2 are the minimum and maximum prediction horizons, Nu is the control
horizon, qj, N1 ≤ j ≤ N2 and rj, 1 ≤ j ≤ Nu are weighting factors, ∆u(k) = u(k)−u(k−1)
is the control increment, ŷ(k + j|k − τsc,k), j = N1, ..., N2 are the forward predictions of
the system outputs, which are obtained on data up to time k − τsc,k, where τsc,k is the
network-induced delay in the backward channel at time k; ω(y; k + j) is the set point
with respect to y and can be obtained approximately by inverting corresponding set point
ω(z; k + j) with respect to z, i.e.,

ω(y; k + j) = f̂−1(ω(z; k + j)), j = N1, ..., N2 (6)

Let x̄(k) = [xT (k) u(k − 1)]T , then the system in (1)—(3) can be rewritten as follows,

x̄(k + 1) = Āx̄(k) + b̄∆u(k) (7)

y(k) = c̄x̄(k) (8)

where Ā =

µ
A b
0 1

¶
, b̄ =

µ
b
1

¶
, c̄ =

¡
c 0

¢
. Thus the j0 step forward output

prediction at time k0 is

ŷ(k0 + j0|k0) = c̄Āj
0
x̄(k0) +

j0−1X

l0=0

c̄Āj
0−l0−1b̄∆u(k0 + l0)

Let j0 = j + τsc,k, k
0 = k − τsc,k, l

0 = l + τsc,k, then the forward output predictions at
time k based on the information of the state on time k − τsc,k and control signals from
time k − τsc,k − 1 is

ŷ(k + j|k − τsc,k) = c̄Ā
j+τsc,k x̄(k − τsc,k) +

j−1X

l=−τsc,k

c̄Āj−l−1b̄∆u(k + l) (9)

Let Ŷ (k|k − τsc,k) = [ŷ(k + N1|k − τsc,k) · · · ŷ(k + N2|k − τsc,k)]
T , ∆U 0(k|k − τsc,k) =

[∆u(k − τsc,k|k − τsc,k) · · · ∆u(k +Nu − 1|k − τsc,k)]
T , then

Ŷ (k|k − τsc,k) = Eτsc,k x̄(k − τsc,k) + Fτsc,k∆U
0(k|k − τsc,k) (10)

where Eτsc,k = [(c̄Ā
N1+τsc,k)T · · · (c̄ĀN2+τsc,k)T ]T , Fτsc,k is a (N2 − N1 + 1) × (Nu + τsc,k)

matrix with the non-null entries defined by (Fτsc,k)ij = c̄ĀN1+τsc,k+i−j−1b̄, j − i ≤ N1 +
τsc,k − 1. Note here that Eτsc,k and Fτsc,k vary with different τsc,ks.

Let$k(y; ·) = [ω(y; k+N1) · · · ω(y; k+N2)]T , the optimal predictive control increments
from k to k +Nu − 1 can then be calculated by letting ∂J(·)/∂∆U 0 = 0,

∆U(k|k − τsc,k) =Mτsc,k($k(y; ·)− Eτsc,k x̄(k − τsc,k)) (11)

where ∆U(k|k − τsc,k) = [∆u(k|k − τsc,k) · · · ∆u(k + Nu − 1|k − τsc,k)]
T , Mτsc,k =

Hτsc,k(F
T
τsc,k

QFτsc,k + R)
−1F Tτsc,kQ, Q, R are diagonal matrices with Qi,i = qi, Ri,i = ri

respectively and Hτsc,k = [0Nu×τsc,k INu×Nu ], INu×Nu is the identity matrix with rank Nu.
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Since the system states are normally unavailable for the controller, we construct the
following system:

x̂(k + 1) = Ax̂(k) + bu(k) (12)

ŷ(k) = ϕ(cx̂(k)) (13)

to observe the system states,

x̂(k + 1) = Ax̂(k) + bu(k) + L(ỹ(k)− ŷ(k)) (14)

where x̂(k) is the observed state at time k.
Let ˆ̄x(k) = [x̂(k) u(k−1)], the real predictive control sequence can then be obtained as

∆U(k|k − τsc,k) =Mτsc,k($k(y; ·)− Eτsc,k
ˆ̄x(k − τsc,k)) (15)

Remark 2.1. Notice that the calculation of the predictive control sequence ∆U(k|k−τsc,k)
in (15) is only based on the input and output data up to time k − τsc,k − 1. This can be
compared with the one applied in [8] where the data from time k − τsc,k to k − 1 are used
to determine the predictive controller, which certainly is hard to obtain by the controller
in practice.

Figure 2. Predictive based approach to wiener systems

2.2. Design of the compensation scheme for network constraints. To take ad-
vantage of the characteristics of the network transmission and the predictive controller
to compensate for the network constraints, i.e., network-induced delays and data packet
dropout, the following assumptions are made:

A1. A time stamp can be used for each data packet transmitted through the network to
notify the time when it was sent;

A2. The sum of the maximum network-induced delay in the forward channel (denoted
by τ̄ca) and the maximum number of continuous data packet dropout (denoted by
χ̄) is bounded by the control horizon, i.e.,

τ̄ca + χ̄ ≤ Nu − 1 (16)

A3. Each control predictive sequence U(k|k − τsc,k) is packed into one packet to be sent
to the actuator.

Remark 2.2. The network-induced delay in the backward channel for each data packet is
known to the controller under assumption A1.
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Remark 2.3. The network-induced delays in both channels for each control predictive
sequence are known to the actuator under assumptions A1 and A3.

Note here that different from conventional predictive control implementations, where
only the first predictive input is applied to the plant, in this paper, we generate a sequence
of predictive inputs and send them in one data packet to the actuator. This is the key
point of the proposed approach to compensate for the network constraints.
With the assumptions above, we propose the following schemes to compensate for the

network constraints in the backward and forward channels, respectively.

2.2.1. Compensation for the network constraints in the backward channel. From Remark
2.1 we know that the network-induced delay in the backward channel is known to the
controller, which enables the predictive control sequence to be calculated (see equation
(15)). However, as the matrices Eτsc,k , Fτsc,k , Mτsc,k , Hτsc,k in (15) vary with the network-
induced delay in the backward channel, it would be a great computation burden for the
predictive controller if these matrices are calculated online. Fortunately, these matrices,
actually, can be calculated off line since all the matrices are fixed for a given τsc. This
advantage enables us to calculate off line all the matrices with respect to the specific τscs,
store them in the controller and just choose the appropriate ones when calculating online
the predictive control increments, according to the current value of the delay τsc,k.

2.2.2. Compensation for the network constraints in the forward channel. In order to im-
plement the compensation scheme to compensate for the network constraints in the for-
ward channel, we introduce a cache for the actuator. When a new sequence arrives at the
actuator side in one data packet as given in assumption A3, it is compared with the one
already in the cache of the actuator according to the time stamps and only the latest one
sent from the controller is stored. The cache is specially designed for the actuator and it
can only store one control sequence (data packet) at any one time.
The comparison process is introduced at the actuator side due to the fact that different

data packets may experience different delays in the forward channel, thereby producing a
situation where for example a data packet sent earlier from the controller may arrive at
the actuator later or may never arrive in the case of data packet dropout. As a result of
the comparison process, the predictive control sequence stored in the cache of the actuator
is always the latest one available at any specific time.
At every execution time instant, the actuator picks out the appropriate control signal

which can compensate for the current network-induced delay in the forward channel from
the predictive control sequence and applies it to the plant. The method used to choose
the appropriate control increment signal at a specific time will be further explained in the
next section. It is necessary to point out that the appropriate control increment is always
available using the delay compensator if assumption A2 holds.
The algorithm of the predictive control based approach to Wiener systems with com-

pensation for network constraints can now be summarized as follows:

S1. The predictive controller receives the delayed signals of output z(k−τsc,) and control
input ∆u(k − τsc,k) and reads the current network-induced delay in the backward
channel τsc,k;

S2. The predictive controller calculates the predictive control sequence ∆U(k|k − τsc,k)
through (15) using delayed data;

S3. The predictive control sequence ∆U(k|k − τsc,k) is packed and sent to the actuator
simultaneously with time stamps k and τsc,k;

S4. The cache of the actuator updates its predictive control sequence according to the
time stamps once a data packet arrives;
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S5. An appropriate control increment signal is picked out from the predictive control
sequence and applied to the plant.

The structure of the proposed approach is illustrated in Figure 3.

Figure 3. The structure of networked predictive control system

3. Stability of the proposed approach. In this section, we first prove that the state
observer proposed in this paper is stable under certain conditions. This fact enables us
to construct the stability theorem for the closed loop system.

3.1. Observer error. Let the observer error e(k) = x(k) − x̂(k). From equations (1),
(12) we obtain

e(k + 1) = x(k + 1)− x̂(k + 1)
= Ae(k)− L(ỹ(k)− ŷ(k)) (17)

Assume ϕ(·) ∈ C1, then by mean value theorem,

ỹ(k)− ŷ(k) = ϕ(cx(k))− ϕ(cx̂(k))

= cϕ0(ξk))e(k) (18)

where ξk ∈ [min{cx(k), cx̂(k)} max{cx(k), cx̂(k)}].
Combining equations (17) and (18) yields

e(k + 1) = (A− Lcϕ0(ξk))e(k) (19)

Notice that though ϕ(·) 6≡ 1(·), it is reasonable to assume that the compensation for
the nonlinear function f(·) is smooth, which means there exists ε > 0 s.t. |ϕ0(α) − 1| ≤
ε,∀α ∈ R. Thus the dynamics of the observer error can be obtained as

e(k + 1) =(A− Lc− ζkLc)e(k)

=Aζke(k) (20)

where Aζk = A− Lc− ζkLc, |ζk| ≤ ε.

Theorem 3.1 (Observer Error). The observer error converges to 0 if there exists a positive
definite solution Pe = P

T
e > 0 to the following two LMIs

ATε PeAε − Pe ≤ 0

AT−εPeA−ε − Pe ≤ 0 (21)

where Aε = A− Lc− εLc and A−ε = A− Lc+ εLc.
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Proof: Let V (k) = eT (k)Pee(k) be a Lyapunov function candidate. Notice the fact
that for any ζk, there exists 0 ≤ λk ≤ 1 such that ζk = λkε + (1 − λk)(−ε). Thus by
simple calculation, the incremental V for system (20) can be obtained as

∆V (k + 1) =eT (k)Γζke(k)

=eT (k)(λkΓε + (1− λk)Γ−ε − 4λk(1− λk)(Lc)
TPeLc)e(k) (22)

where Γζk = A
T
ζk
PeAζk − Pe.

Noticing that λk(1 − λk) ≥ 0 and (Lc)TPeLc is semi positive definite, it yields that
∆V (k) is decreasing which completes the proof.

3.2. Closed-loop stability. Let τ ∗ca,k denote the network-induced delay in the forward
channel of the predictive control sequence, from which the control signal is picked out by
the actuator at time instant k. The time when the sequence was sent from the controller
can then be read from its time stamp as

k∗ = k − τ ∗ca,k = max
j
{j|∆U(j|j − τsc,j) ∈ Γk} (23)

where Γk is the set of the predictive control increment sequences that are available during
time interval (k− 1, k] at the actuator side, including not only the one in the cache of the
actuator but others that arrive at the actuator during this interval.
From equations (15), (23), the control signal adopted by the actuator at time k is

obtained as

∆u(k) = dTτ∗ca,k∆U(k − τ ∗ca,k|k − τ ∗k )

= −dTτ∗ca,kMτ∗k
Eτ∗k

ˆ̄x(k − τ ∗k )

= −Στk
ˆ̄x(k − τ ∗k ) (24)

where dτ∗ca,k is aNu×1 matrix with all entries 0 except the (τ
∗
ca,k+1)th is 1, τ

∗
k = τ ∗ca,k+τ

∗
sc,k,

τ ∗sc,k = τsc,k∗, Στk = dTτ∗ca,kMτ∗k
Eτ∗k

and the set point is assumed to be 0 without loss of

generality.

Let ē(k) = x̄(k)− ˆ̄x(k) = [e(k) 0]T , then

ē(k + 1) = Āξk ē(k) (25)

where Āξk =

µ
A− Lcϕ0(ξk) 0

0 0

¶
.

Let Z(k) = [x̄T (k − τ̄) · · · x̄T (k) ē(k − τ̄) · · · ē(k)]T , then the closed loop system can
be represented by

Z(k + 1) = Λξk,τkZ(k) (26)

where Λξk,τk =

µ
Λ11τk Λ12τk
0 Λ22ξk

¶
, Λ11τk =

⎛

⎜⎜⎜⎜⎝

0n+1 In+1
In+1

. . .

In+1
· · · −Στk · · · Ā

⎞

⎟⎟⎟⎟⎠
,
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Λ22ξk =

⎛

⎜⎜⎜⎜⎜⎝

0n+1 In+1
0n+1 In+1

. . .
. . .
. . . In+1

Āξk

⎞

⎟⎟⎟⎟⎟⎠
, and Λ12τk is a block matrix with all its entries

(blocks) 0 except (Λ12τk)(τ̄−1)×(τ̄−τ∗k+1) = −Στk .

Theorem 3.2 (Closed-loop stability). The closed loop system is stable if (21) holds and
there exists a positive definite solution Pc = P Tc > 0 for the following (τ̄ca + 1)(τ̄sc + 1)
LMIs

(Λ11τk)
TPcΛ

11
τk
− Pc ≤ 0 (27)

Proof: Noticing the block-triangular structure of the system matrix Λξk,τk for the
closed-loop system, we see that the state observer can be designed separately without
influencing the stability of the system and the closed-loop system is stable if we can
guarantee the stability of the state observer (Theorem 3.1) and the following system,

X(k + 1) = Λ11τkX(k) (28)

where X(k) = [x̄T (k − τ̄) · · · x̄T (k)].
Let V (k) = XT (k)PcX(k) be a Lyapunov function candidate, then the incremental

V (k) for system (28) is

∆V (k) = XT (k)((Λ11τk)
TPcΛ

11
τk
− Pc)X(k)

which completes the proof using equation (27).

Remark 3.1. Notice that the two conditions ((21) and (27)) that guarantee the stability of
the closed-loop system are with respect to the compensation accuracy for the nonlinearity
and the influence of the network constraints respectively.

Figure 4. A comparison between with/without compensation for network constraints

4. Simulation. An example is given in this section to illustrate the validity of the pro-
posed approach. For this purpose, a second order plant model in discrete time with a
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Figure 5. A comparison between with/without compensation for output nonlinearity

static nonlinear output process and random delays in both channels and data packet
dropout in the forward channel, is adopted,

A =

µ
0.8 0.1
0 1

¶
, b =

µ
0.05
0.2

¶
, c =

¡
1 0

¢
.

Other parameters of the simulation are chosen as τ̄ = 8, τ̄ca = 4, τ̄sc + χ̄ = 4, Nu =
8, Np = 10, ε = 0.5 and the initial state x(0) = x0 = [−0.1 0.2]T . The delays in both
channels are set to vary randomly within their upper bounds. Such a system using the
proposed approach in this paper can be proven to be stable under Theorem 3.2.
Two cases which illustrate the validity of the compensation for the network constraints

and the compensation for the output nonlinearity respectively, are shown in Figure 4 and
Figure 5. In both cases, all the other parameters remain the same and only the evolution
of the first state of the system is illustrated. The simulation results show that the system
is stable with the compensation scheme while unstable without it, which illustrate the
validity of the proposed approach in this paper.

5. Conclusion. In this paper, we propose a predictive control based approach to deal
with a Wiener type system which is closed through a network. In this approach, a state
observer is designed to derive the predictive controller using delayed sensing data, and
with the use of time stamps for each data packet, the negative effects of the network-
induced delay and data packet dropout in both channels are also compensated for. The
deriving closed-loop system is proved to be stable under certain conditions related to
the compensation for the nonlinear process and the network constraints. The effects of
the compensation for the nonlinearity and network constraints are also illustrated by
simulations.
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approach.
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